9.4 Appendix 4: Summary of Instruments and Measurements Available as of 2014 for Investigating Organic Molecules in Rock and Soil Samples

Key to Measurement Goals related to Martian Organic Geochemistry and Planetary Protection

1	Determine wh	nether the s	samples cont	tain organic	compounds
_	Deter mine wi	icuici tiic i	Juilipies com	min or sume	compounds

- 1A Use non-destructive methods to search for the presence of organic compounds
- 1B Quantify the bulk organic content of the samples

2 Determine the origin of any organic compounds in the samples

- 2A Determine the molecular composition of organics
- 2B Determine the isotopic composition of organics
- 2C Study spatial variations in abundance and characteristics of organic molecules in the sample matrix, relative to mineralogical, chemical, and textural features
- 2D Investigate the chirality of amino acids
- 2E Examine long chain hydrocarbons for chain length effects
- 2F Quantify the degree of contamination by viable or recently deceased terrestrial microbes and their residues

SURVEY ANALYTICAL METHODS TO BE USED in LIGHT YELLOW TARGETED ANALYTICAL METHODS TO BE USED in LIGHT BLUE Category 1: Non-Destructive, Sample Surface-Based Technique Method Notes (Dependencies, Limitations, Assumptions, etc.) Performance Characteristics and Sample Requirements and kaman: Aromatics <10-4 w/w (<100 ppm) Aliphatics <10-4 w/w (<100 ppm) 50 um/spot at 1 to 10s per spot ensitivities depend on organic species and are matrix Fluorescence: Aromatics <10-6 w/w (<ppm) Single cell sensitivity (~2 pg carbon) [6] 50 um/spot at 1s per spot Surface roughness can be handled based on optical system with hit against sensitivites or integration times Detection limits strongly dependent on laser wavelength, target species. 532 nm excitation provides non-quantitative detection of hematile, beta-carolene. Raman spectra are subject to organic and mineral background fluorescence, which can be mitigated by time-gating. Confocal Raman Spectroscopy at up to 360nm micron spatial Non-destructive. Benefits from thin section, polished surface prep. Or can be fresh fracture surface with contour following confocal optics. s) [1] with absolute detection limit correlated to number of analyzed 50 ppm graphic carbon [1] Single cell detection sensitivity, [2] avoid sample damage. FT-IR Spectroscopy Not sensitive to graphitic carbon. 1A, 2C unprepared surfaces. Ideally KBI IR Reflectance Spectroscopy Non-destructive. 1A, 2C Category 2: Slightly Destructive to Sample Surface Performance Characteristics and Detection Limits Objectives Sample Requirements and Degradation Method Notes (Dependencies, Limitations, References Analytical Method laser beam damage Vacuum exposure, polished thin section or fresh fracture surface, Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) Non quantitative, low ppb sensitivity. Provides context of isotopes. C, N, S, D/H Very sensitive to surface contamination Maps organic and inorganic species. LAL Assay Gram-negative microbes only. Insensitive to gram-Wipe, swap, extraction. Sample wipe/swab detritus. Wipe, swap, extraction. Sample exposed to water/solvent, ATP luminometry Proportional to microbial metabolic activity Insensitive to spores wipe/swab detritus. Wipe, swap, extraction. Sample exposed to water/solvent, ~0.01% maximum sensitivity to abundance of microbial flora Microbial plating assay

e/swab detritus

SURVEY ANALYTICAL METHODS TO BE USED in LIGHT YELLOW TARGETED ANALYTICAL METHODS TO BE USED in LIGHT BLUE Category 1: Non-Destructive, Sample Surface-Based Technique Method Notes (Dependencies, Limitations, Assumptions, etc.) Performance Characteristics and Sample Requirements and kaman: Aromatics <10-4 w/w (<100 ppm) Aliphatics <10-4 w/w (<100 ppm) 50 um/spot at 1 to 10s per spot ensitivities depend on organic species and are matrix Fluorescence: Aromatics <10-6 w/w (<ppm) Single cell sensitivity (~2 pg carbon) [6] 50 um/spot at 1s per spot Surface roughness can be handled based on optical system with hit against sensitivites or integration times Detection limits strongly dependent on laser wavelength, target species. 532 nm excitation provides non-quantitative detection of hematile, beta-carolene. Raman spectra are subject to organic and mineral background fluorescence, which can be mitigated by time-gating. Confocal Raman Spectroscopy at up to 360nm micron spatial Non-destructive. Benefits from thin section, polished surface prep. Or can be fresh fracture surface with contour following confocal optics. s) [1] with absolute detection limit correlated to number of analyzed 50 ppm graphic carbon [1] Single cell detection sensitivity, [2] avoid sample damage. FT-IR Spectroscopy Not sensitive to graphitic carbon. 1A, 2C unprepared surfaces. Ideally KBI IR Reflectance Spectroscopy Non-destructive. 1A, 2C Category 2: Slightly Destructive to Sample Surface Performance Characteristics and Detection Limits Objectives Sample Requirements and Degradation Method Notes (Dependencies, Limitations, References Analytical Method laser beam damage Vacuum exposure, polished thin section or fresh fracture surface, Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) Non quantitative, low ppb sensitivity. Provides context of isotopes. C, N, S, D/H Very sensitive to surface contamination Maps organic and inorganic species. LAL Assay Gram-negative microbes only. Insensitive to gram-Wipe, swap, extraction. Sample wipe/swab detritus. Wipe, swap, extraction. Sample exposed to water/solvent, ATP luminometry Proportional to microbial metabolic activity Insensitive to spores wipe/swab detritus. Wipe, swap, extraction. Sample exposed to water/solvent, ~0.01% maximum sensitivity to abundance of microbial flora Microbial plating assay

e/swab detritus

Category 3: Destructiv					
Analytical Method	Objectives Addressed	Sample Requirements and Degradation	Performance Characteristics and Detection Limits	Method Notes (Dependencies, Limitations, Assumptions,etc.)	References
Total inorganic carbon and total	1B, weight %	Both non acid and acid digestion	~1-10 ppb in 1 ml of gas or about 1E-11	Splitting to NPD detectors, nitrogen may be accessible.	
organic carbon	abundance of organic carbon	used to separate inorganic from organic	to 1E-12 g of CO2.		
otal inorganic carbon and total	1B, weight %	Both non acid and acid digestion	~1-10 ppb in 1 ml of gas or about 1E-11	Probably similar detection limit to above (methanizer w/	
	abundance of organic carbon	used to separate inorganic from organic	to 1E-12 g of CO2 (??)	flame ionization), depending upon MS capability. Back calculating the sensitivity dependent upon the	
	· ·	, and the second		background, detector noise, kind of tough to say in	
				general. Evolved compounds other than CO2 can be detected. Nitrogen can be done at the same time. Need	
				nitrogen perhaps even D/H.	
Microfluidic Capillary Electrophoresis	2A, 2D, 2F		1 to 10 ppb following extraction, derivatization	Process blanks?	
GC/MS FAME using cyanopropyl	2A, 2E, 2F		Detection down to below ~ 1 ng per	Detection limits are potentially lower if GC does not have	
stationary phase			compound	significant non-specific absorption, or other issues. Lower detection limits possible by radio GC or LC using	
				radiolabeled derivatizing agent.	
GC/MS using high temperature GC column, and ammonia				Probably similar detection limit to above (methanizer w/	
chemical ionization				calculating the sensitivity dependent upon the	
				background, detector noise, kind of tough to say in general. Evolved compounds other than CO2	
Tunable Laser Spectroscopy	2B	Destructive via pyrolysis. Typical		general. Evolved compounds other than CO2	
		amount of sample required per			
Pyrolysis-MS, Pyrolysis-GC-MS		analysis: x mg Destructive via pyrolysis. Typical		Does not indicate compounds present, only their	
		amount of sample required per		fragments.	
Liquid extraction and	2A, 2D, 2E, 2F	analysis: x mg Extraction, destructive	Detection limits are compound-specific,	Can use library mass spectra to suggest compound	
derivatization followed by GC-MS			but as low as ~1 pmol; more like	class. QqQ-MS can target specific compounds, ultrahigh resolution MS can deduce molecular formulae.	
			100pmol for many hydrocarbons. Nominal mass accuracy in typical	Can target chirality (e.g. amino acids, amines, etc).	
10.10	01.00.00		system.	Requires authentic standard for definitive identification.	
LC-MS	2A, 2D, 2E, 2F		Detection limits are compound-specific, but typically ~1 fmol 5 ppm to sub ppm	QqQ-MS can target specific compounds, ultrahigh resolution MS (e.g. ToF-MS, FT-MS) can deduce	
		possibly hydrolysis, desalting, and	mass accuracy possible	molecular formulae. Different ionization modes (ESI,	
		more		APcl, APPI) can target different functionalities. Targets M+1 parent ion. Can target chirality (e.g. amino acids).	
				nano-LC can improve sensitivity 10-100 fold. Can	
				couple mass and optical (fluorsecence, absorbance) detections. Requires authentic standard for definitive	
				identification. Cannot use library spectra.	
high resolution MS (infusion or		Sample crushing followed by	Semi-quantitaitve, wide range of	Ultrahigh resolution MS (e.g. ToF-MS, FT-MS) can	
DART)		destructive solvent extraction, possibly hydrolysis. Minimal other	sensitivies including sub-fmol, sub ppm mass accuracy possible	deduce molecular formulae. Different ionization modes (ESI, APcI, APPI) can target different functionalities.	
		workup regired	, '	Targets M+1 parent ion. DART required minimal	
				preparation and has ~1 mm spot size. No chromatography, so no distinction of isomers or	
				enantiomers.	
liquid ICPMS			5 nmol dissolved sulfate at 0.15‰ precision; Paris G., Sessions A. L.,	targets any sulfur in solution as sulfate; can be used for organic compound-class analysis	
			Subhas A. V. and Adkins J. F. (2013) MC-	1 - 3	
			ICP-MS measurement of δ34S and Δ33S in small amounts of dissolved		
			sulfate. Chemical Geology 345, 1-12.		
combustion EA-IRMS			25 nmol N, 41 nmol C, both at ±1.0% precision; Polissar P. J., Fulton J.	relatively low sensitivity but high precision (0.1 permil)	
			M., Junium C. K., Turich C. C. and		
			Freeman K. H. (2009) Measurement of 13C and 15N Isotopic Composition on		
			Nanomolar Quantities of C and N.		
pyrolysis EA-IRMS		destructive	Analytical Chemistry 81, 755–763. 1 ug organic H or O	precision of 2-4 permil for H; O??	
	2B	Destructive via pyrolysis. Typical	. ag algano i i oi o	production 2-4 politicion 11, O ! !	
		amount of sample required per			
GC-combustion-IRMS	0.0	analysis: x mg Extraction, destructive	130 pmol CH4 at 0.1‰precision; Merritt	Requires excellent separation of compounds and prior	
GMZHIOBSDUHOG-OG	2B		130 pillor of 14 at 0. 1 respicusion, ividinit		
GO-001110080011-IKMS	28		D., Hayes J. M. and Marais Des D. J.	identification of structure.	
OMNHIOBRUUII IO	28	·			
GMAHIORSDUING	28		D., Hayes J. M. and Marais Des D. J. (1995) Carbon isotopic analysis of atmospheric methane by isotope-ratio- monitoring gas chromatography-mass		
GO-WIIIDUSUUIHKMS	28		D., Hayes J. M. and Marais Des D. J. (1995) Carbon isotopic analysis of atmospheric methane by isotope-ratio- monitoring gas chromatography-mass spectrometry. Journal of Geophysical		
	2B		D., Hayes J. M. and Marais Des D. J. (1995) Carbon isotopic analysis of atmospheric methane by isotope-ratio- monitoring gas chromatography-mass spectrometry. Journal of Geophysical Research 100, 1317–1326. 25 nmol H as heptadecanoic acid at		
		Extraction, destructive	D., Hayes J. M. and Marais Des D. J. (1995) Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry. Journal of Geophysical Research 100, 1317–1326. 25 nmol H as heptadecanolo acid at 2.7% precision, Hillert A., Douthitt C.,	identification of structure.	
		Extraction, destructive	D., Hayes J. M. and Marais Des D. J. (1995) Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry. Journal of Geophysical Research 100, 1317–1326. 25 mmol H as heptadecanoic acid at 2.7% precision, Hilkert A., Douthitt C., Schluter H. and Brand W. A. (1999) Isotope ratio monitoring GCMS of D/H by	identification of structure.	
		Extraction, destructive	D., Hayes J. M. and Marais Des D. J. (1995) Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry. Journal of Geophysical Research 100, 1317–1326. 25 nmol H as heptadecanoic acid at 2.7% precision, Hillert A., Douthitt C., Schluter H. and Brand W. A. (1999) isotope ratio monitoring GCMS of D/H by high temperature conversion isotope	identification of structure.	
		Extraction, destructive	D., Hayes J. M. and Marais Des D. J. (1995) Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry. Journal of Geophysical Research 100, 1317–1326. 25 mmol H as heptadecanoic acid at 2.7% precision, Hillert A., Douthitt C., Schluter H. and Brand W. A. (1999) tsotope ratio monitoring GCMS of D/H by high temperature conversion isotope ratio mass spectrometry. Rapid Commun. Mass Spectrometry. Rapid Commun. Mass Spectrom 13.	identification of structure.	
GC-pyrolysis-IRMS	2B	Extraction, destructive	D., Hayes J. M. and Marais Des D. J. (1995) Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry. Journal of Geophysical Research 100, 1317–1326. 25 mol H as heptadecanoic acid at 2.7% precision; Hilkert A. Douthitt C., Schuter H. and Brand W. A. (1999) isotope ratio monitoring GCMS of D/H by high temperature conversion isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 13, 1226–1230.	identification of structure.	
GC-pyrolysis-IRMS		Extraction, destructive	D., Hayes J. M. and Marais Des D. J. (1995) Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromotography-mass spectrometry. Journal of Geophylicial Research 100, 1317–1326. 25 mol H as heptadecanoic acid at 2.7% precision; Hilkert A., Douthitt C., Schluter H. and Brand W. A. (1999) isotope ratio monitoring GCMS of D/H by high temperature conversion isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 13, 1226–1230. 20 pmol S as dimethylsulfide, at 0.3%—precision, Armani A., Sessions A L. and	identification of structure.	
GC-pyrolysis-IRMS	2B	Extraction, destructive	D. Hayes J. M. and Marais Des D. J. (1995) Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry. Journal of Geophysical Research 100, 1317–1326. 25 mod H as heptadecanoic acid at 2.7% precision; Hilkert A., Douthitt C., Schluter H. and Brand W. A. (1999) Isotope ratio monitoring GCMS of D/H by high temperature conversion isotope ratio monitoring GCMS of D/H by high temperature conversion isotope ratio muss spectrometry. Rapid Commun. Mass Spectrom. 13, 1226–1230. 20 pmol S as dimethylsulfide, at 0.3% precision; Amrani A., Sessions A. L. and Adkins J. F. (2009) Compound-Specific	identification of structure.	
GC-pyrolysis-IRMS	2B	Extraction, destructive	D., Hayes J. M. and Marais Des D. J. (1995) Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry. Journal of Geophysical Research 100, 1317–1326. 25 mod H as heptadecanoic acid at 2.7% precision; Hilkert A. Douthitt C. Schluter H. and Brand W. A. (1999) Isotope ratio monitoring GCMS of D/H by high temperature conversion isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 13, 1226–1230. 20 pmol S as dimethylsulfide, at 0.3% precision, Amrani A., Sessions A. L. and Adkins J. F. (2009) Compound-Specific 334S Analysis of Volatile Organics by Coupled GCMMtiocolleron.	identification of structure.	
GC-pyrolysis-IRMS	2B 2B	Extraction, destructive	D., Hayes J. M. and Marais Des D. J. (1995) Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry. Journal of Geophysical Research 100, 1317–1326. 25 mol H as heptadecanoic acid at 2.7% precision; Hilkert A., Douthitt C., Schluter H. and Brand W. A. (1999) isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 13, 1226–1230. 20 pmol S as dimethylsuifide, at 0.3% precision; Amrani A., Sessions A. L. and Adkins J. F. (2009) Compound-Specific 3454 Analysis of Volatile Organics by	identification of structure.	
GC-pyrolysis-IRMS GC-ICPMS PCR	2B 2B	Extraction, destructive	D., Hayes J. M. and Marais Des D. J. (1995) Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry. Journal of Geophysical Research 100, 1317–1326. 25 mod H as heptadecanoic acid at 2.7% precision; Hilkert A. Douthitt C. Schluter H. and Brand W. A. (1999) Isotope ratio monitoring GCMS of D/H by high temperature conversion isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 13, 1226–1230. 20 pmol S as dimethylsulfide, at 0.3% precision, Amrani A., Sessions A. L. and Adkins J. F. (2009) Compound-Specific 334S Analysis of Volatile Organics by Coupled GCMMtiocolleron.	compound must be GC-amenable compound must be GC-amenable	
GC-pyrolysis-IRMS GC-ICPMS PCR FISH Fluorescence imaging of fluorescently tagged compounds	2B 2B	Extraction, destructive	D., Hayes J. M. and Marais Des D. J. (1995) Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry. Journal of Geophysical Research 100, 1317–1326. 25 mod H as heptadecanoic acid at 2.7% precision; Hilkert A. Douthitt C. Schluter H. and Brand W. A. (1999) Isotope ratio monitoring GCMS of D/H by high temperature conversion isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 13, 1226–1230. 20 pmol S as dimethylsulfide, at 0.3% precision, Amrani A., Sessions A. L. and Adkins J. F. (2009) Compound-Specific 334S Analysis of Volatile Organics by Coupled GCMMtiocolleron.	identification of structure.	

Category 3: Destructive of Whole Sample							
Analytical Method	Objectives	Sample Requirements and	Performance Characteristics and	Method Notes (Dependencies, Limitations,	References		
Total inorganic carbon and total	Addressed 1B, weight %	Degradation Both non acid and acid digestion	Detection Limits ~1-10 ppb in 1 ml of gas or about 1E-11	Assumptions,etc.) Splitting to NPD detectors, nitrogen may be accessible.			
organic carbon	abundance of	used to separate inorganic from	to 1E-12 g of CO2.	Spritting to NFD detectors, filtrogen may be accessible.			
Total inorganic carbon and total	organic carbon 1B, weight %	organic Both non acid and acid digestion	~1-10 ppb in 1 ml of gas or about 1E-11	Probably similar detection limit to above (methanizer w/			
organic carbon	abundance of	used to separate inorganic from	to 1E-12 g of CO2 (??)	flame ionization), depending upon MS capability. Back			
· ·	organic carbon	organic	, , ,	calculating the sensitivity dependent upon the			
				background, detector noise, kind of tough to say in general. Evolved compounds other than CO2 can be			
				detected. Nitrogen can be done at the same time. Need			
Microfluidic Capillary	2A, 2D, 2F		1 to 10 ppb following extraction,	nitrogen perhaps even D/H. Process blanks?			
Electrophoresis			derivatization	Process blanks?			
GC/MS FAME using cyanopropyl	2A, 2E, 2F		Detection down to below ~ 1 ng per	Detection limits are potentially lower if GC does not have significant non-specific absorption, or other issues.			
stationary phase			compound	Lower detection limits possible by radio GC or LC using			
				radiolabeled derivatizing agent.			
GC/MS using high temperature GC column, and ammonia				Probably similar detection limit to above (methanizer w/ flame ionization), depending upon MS capability. Back			
chemical ionization				calculating the sensitivity dependent upon the			
				background, detector noise, kind of tough to say in			
Tunable Laser Spectroscopy	2B	Destructive via pyrolysis. Typical		general. Evolved compounds other than CO2			
' ''		amount of sample required per					
Pyrolysis-MS, Pyrolysis-GC-MS		analysis: x mg Destructive via pyrolysis. Typical		Does not indicate compounds present, only their			
, , , , , , , , , , , , , , , , ,		amount of sample required per		fragments.			
Liquid extraction and	2A, 2D, 2E, 2F	analysis: x mg Extraction, destructive	Detection limits are compound-specific,	Can use library mass spectra to suggest compound			
derivatization followed by GC-MS	ZA, ZU, ZE, ZF	Extraction, destructive	but as low as ~1 pmol; more like	class. QqQ-MS can target specific compounds,			
			100pmol for many hydrocarbons.	ultrahigh resolution MS can deduce molecular formulae.			
			Nominal mass accuracy in typical system.	Can target chirality (e.g. amino acids, amines, etc). Requires authentic standard for definitive identification.			
LC-MS	2A, 2D, 2E, 2F	Sample crushing followed by	Detection limits are compound-specific,	QqQ-MS can target specific compounds, ultrahigh			
		destructive solvent extraction,	but typically ~1 fmol 5 ppm to sub ppm	resolution MS (e.g. ToF-MS, FT-MS) can deduce			
		possibly hydrolysis, desalting, and more	mass accuracy possible	molecular formulae. Different ionization modes (ESI, APcI, APPI) can target different functionalities. Targets			
		lilote		M+1 parent ion. Can target chirality (e.g. amino acids).			
				nano-LC can improve sensitivity 10-100 fold. Can			
				couple mass and optical (fluorsecence, absorbance) detections. Requires authentic standard for definitive			
				identification. Cannot use library spectra.			
high resolution MS (infusion or		Sample crushing followed by destructive solvent extraction,	Semi-quantitaitve, wide range of	Ultrahigh resolution MS (e.g. ToF-MS, FT-MS) can			
DART)		possibly hydrolysis. Minimal other	sensitivies including sub-fmol, sub ppm mass accuracy possible	deduce molecular formulae. Different ionization modes (ESI, APcI, APPI) can target different functionalities.			
		workup regired	, · · ·	Targets M+1 parent ion. DART required minimal			
				preparation and has ~1 mm spot size. No chromatography, so no distinction of isomers or			
				enantiomers.			
liquid ICPMS		destructive; sample oxidized to sulfate	5 nmol dissolved sulfate at 0.15‰ precision; Paris G., Sessions A. L.,	targets any sulfur in solution as sulfate; can be used for			
		Suilate	Subhas A. V. and Adkins J. F. (2013) MC-	organic compound-class analysis			
			ICP-MS measurement of δ34S and				
			∆33S in small amounts of dissolved sulfate. Chemical Geology 345, 1–12.				
combustion EA-IRMS		destructive	25 nmol N, 41 nmol C, both at	relatively low sensitivity but high precision (0.1 permil)			
			±1.0% precision; Polissar P. J., Fulton J.				
			M., Junium C. K., Turich C. C. and Freeman K. H. (2009) Measurement of				
			13C and 15N Isotopic Composition on				
			Nanomolar Quantities of C and N.				
pyrolysis EA-IRMS		destructive	Analytical Chemistry 81, 755–763. 1 ug organic H or O	precision of 2-4 permil for H; O??			
Tunable Laser Spectroscopy	2B	Destructive via pyrolysis. Typical					
		amount of sample required per analysis: x mg					
GC-combustion-IRMS	2B	Extraction, destructive	130 pmol CH4 at 0.1‰precision; Merritt	Requires excellent separation of compounds and prior			
			D., Hayes J. M. and Marais Des D. J.	identification of structure.			
			(1995) Carbon isotopic analysis of atmospheric methane by isotope-ratio-				
			monitoring gas chromatography-mass				
			spectrometry. Journal of Geophysical				
GC-pyrolysis-IRMS	2B	Extraction, destructive	Research 100, 1317–1326. 25 nmol H as heptadecanoic acid at	compound must be GC-amenable			
			2.7‰ precision; Hilkert A., Douthitt C.,				
			Schluter H. and Brand W. A. (1999) Isotope ratio monitoring GCMS of D/H by				
			high temperature conversion isotope				
			ratio mass spectrometry. Rapid				
			Commun. Mass Spectrom. 13, 1226–1230.				
GC-ICPMS	2B	Extraction, destructive	20 pmol S as dimethylsulfide, at 0.3‰	compound must be GC-amenable			
			precision; Amrani A., Sessions A. L. and Adkins J. F. (2009) Compound-Specific				
			δ34S Analysis of Volatile Organics by				
			Coupled GC/Multicollector-ICPMS.				
PCR	2F		Analytical Chemistry 81, 9027–9034.				
FISH Fluorescence imaging of	2F			only useful in very specific conditions for terrestrial			
fluorescently tagged compounds				contaminants			
ELISA	2F			only useful in very specific conditions for terrestrial contaminants			
				contaminants			

9.4.1 Notes Regarding detection limits and capability of surface spectroscopic techniques

Challenges exist in defining the detection limits and capability of surface spectroscopic techniques, as they are strongly dependent on instrument design and sample/measurement specifications.

Factors that affect technique sensitivity due to optical design include:

- 1) Optical throughput (laser power, transmission of optics, etc.),
- 2) Collection efficiency (f/#, DOF, DOP, etc.),
- 3) Detector sensitivity,
 - a. Noise (dark current, shot noise, read noise etc.),
 - b. Performance (dynamic range, gain, QE, etc.),
- 4) Spectral range (may require time gating to improve sensitivity based on technique)

Example factors that affect technique sensitivity due to sample/measurement specification:

- 1) *Measurement duration:* In general, increase integration time for spectroscopic techniques with increase S/N and therefore sensitivity of the technique (assuming S/N is not driven by noise sources, other spectral interferences limitations, etc.).
- 2) Spatial mapping requirements: Instrument design will be driven by ability to map the core over a given spatial area with a specified resolution. This will drive the optical design and sensitivity. In addition, if the measurement duration is limited, resolution or area can be traded against sensitivity/integration time per spot.
- 3) *Sample working distance*: The optical design can be optimized for any working distance at the expense of sensitivity or instrument size (f/#).
- 4) Surface Roughness: Ability for a technique to handle surface roughness will require trades in optical design versus sensitivity or sensitivity to surface only materials (making it less robust to matrix variability).
- 5) *Matrix affects*: Spectroscopic technique sensitivities are strongly dependent on the matrix including:
 - a. Background interferences such as mineral fluorescence and required time gating to increase organic sensitivity in techniques like Raman.
 - b. Variability of depth of penetration based on mineral matrix type will affect ability to localize "organic detection" to surface only or will limit the optical designs to confocal or surface approaches. This will limit surface roughness robustness for the techniques.
- 6) Species type: Each spectroscopic technique will have species-specific sensitivities due to molecular interactions (i.e. cross sections for Raman spectroscopy) including technique species-specific interference, which can limit detection sensitivities.

These challenges for defining sensitivity of a survey/spectroscopic non-destructive technique led to an analysis approach that will use a series of instruments that can correlate organics and mineralogy and have complementary sensitivities and specificities.

Future work recommendations would include further constraining the processes and sample expectations to solidify instrumentation requirements including:

- Time for survey measurement, which will be derived by the spatial area and spatial resolution requirements and sensitivity requirement (integration time, DOF, f/#, etc.)
- Making a compilation of potential contaminant species to assess specific detection limits and

interferences.

As a point of procedure, a subset of techniques should be used to analyze identical samples to validate instrument performances and characterize sensitivity and specificity to common species at practical contamination concentrations. This will also help to identify interference levels that inhibit the ability to identify the scientific relevant organics.

Accordingly, and based on instrument capabilities as of the time of writing in 2014 (Table 3 and Appendix 4), the following mass spectrometric survey methods are recognized as being the most specific and sensitive techniques to detect organic contaminants of concern:

Liquid Chromatography–Mass Spectrometry (LC-MS) in full scan mode can detect a wide range of polar analytes of biological relevance including amino acids and oligopeptides, nucleobases and oligonucleotides, intact polar lipids etc. LC-MS is the preferred means to analyze molecules of any size that are not volatile under normal circumstances. Ionization utilizes the evaporating solvent to assist the addition of either positive or negative charges, most commonly via electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI).

Gas Chromatography-Mass Spectrometry (GC-MS; also full scan mode) can detect a wide range of molecules that are non-polar and volatile to semi-volatile under moderate temperatures. Typical analytes are aliphatic and aromatic hydrocarbons, low MW lipids, short-chain carboxylic acids and esters, etc.